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Solution of  the Ornste in-Zernike  Equation for 
a Sof t -Core  Yukawa Fluid 
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A model for simple fluids is proposed in which the radial distribution 
function has a parametric form appropriate to a soft-core fluid for inter- 
particle separation r <. R, where R is some range parameter. For r > R, 
the direct correlation function is assumed to be of Yukawa form. The 
Ornstein-Zernike equation is solved for this system, yielding the radial 
distribution and the total correlation function for the entire range of 
interparticle separation. Methods of relating the model fluid to a real 
fluid by assigning values to the parameters are discussed. 

KEY WORDS: Ornstein-Zernike equation; Baxter's factorization; soft- 
core; Yukawa closure. 

1. I N T R O D U C T I O N  

In  a recent paper  Perram and  Wright  ~1> int roduced a method for describing 

the correlat ion funct ions for a fluid with soft-core repulsions. The Orns te in -  

Zernike  e q u a t i o #  2> 

h(lrl) = c(Irl) + 0 j  ds c(]r - s[)h(Isi) (1) 

where p is the n u m b e r  density, h(r) is the total correlat ion function,  and  

c(r) is the direct correlat ion funct ion,  was solved for h(r) having the para-  

metric form 

a~A~2 [sinh ~x  ] 
h(x) = - 1  + ~ [ _  -~x 1 , 0 < x < 1 (2) 
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and the direct correlation satisfying 

e (x )  = O, x > 1 (3) 

Equations (2) and (3) may be considered to be appropriate to the Percus- 
Yevick approximation for a purely repulsive potential whose range R is 
here set to be 1 for convenience. Viewed in this way, Eq. (2) may be regarded 
as an ansatz for h(x) on the domain 0 < x < 1. The motivation for this 
model fluid was the need to describe more adequately correlations in fluids 
whose intermolecular potential has a soft-core component, typically softer 
than, for example, the repulsive part of the Lennard-Jones potential. The 
latter has been adequately described in terms of hard-sphere repulsions via 
the WCA perturbation theory/3) However, for softer potentials, such as 
those relevant to liquid metals ~4'5) and argon, (6) a reference potential less 
harsh than hard spheres is desirable. 

In addition to these considerations of the inadequacy of the treatment 
of the soft core, some attention must be given to including a more realistic 
form of the direct correlation function for x > 1 than that assumed in 
Eq. (3). Despite the convenience of assuming Eq. (3), it is nonetheless in- 
correct even for the case of noninteracting hard spheres. ~v Much recent 
work on hard-core fluids has centered around assuming that c(x) has a 
Yukawa form for x > 1. ~8) This may be regarded as a mean spherical ap- 
proximation for fluids interacting with an attractive Yukawa potential ~9) or 
as an ansatz for the real c(x) outside the hard core, resulting in a generalized 
mean spherical approximation (GMSA)J 1~ The success of the GMSA and 
the recent suggestion of Hoye and Stell regarding the use of the Yukawa 
form of c(x) to enforce self-consistency on the Ornstein-Zernike equa- 
tion (1~) implies that a more appropriate form for c(x) is given by 

c(x) = ~ Kje-~/x-1), x > 1 (4) 
x j = l  

In Section 2 we solve the Ornstein-Zernike equation with closure rela- 
tions given by Eqs. (2) and (4). This model combines the desirable features 
of soft-core repulsions and a form of  direct correlation relevant to a realistic 
intermolecular potential. In Section 3 we discuss methods of assigning the 
2 x (N + M) parameters (~i, h~, Kj, and zj) in such a way as to model the 
behavior of  real fluids. 

2. M E T H O D  OF SOLUTION 

The method of  solution used is that of Baxter's factorization tech- 
nique. <12) The Fourier transform of the Ornstein-Zernike equation may be 
written as 

[1 - p~(k)][1 + pft(k)] = 1 (5) 
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where O(k) and ft(k) are the Fourier transforms of the direct correlation 
function and total correlation function, respectively. Following Baxter, (12~ 
we find that 

.,~(k) = 1 - p6(k)  = Q ( k ) O ( - k  ) (6) 

where Q(k) is related to a real-space function q(r)  by the pair of relations 

Q(k)  = 1 - 2~rp dx  e~kXq(x) (7) 

2rrpq(x) = ~ dk e-'ex[1 - Q(k)] (8) 
oo 

Using the condition contained in Eq. (4) and closing the integral in Eq. (8) 
around the upper half-plane for x < 0, and around the lower half-plane 
for x > 1, we find that 

(Oj~ 1 x < 0 

q(x)  = /3je-~/:r x > 1 (9) 

where 

/3j = Kj 1 
zj  Q(iz~)' j = i,..., U (10) 

We now define a function qo(x) by the relation 

N 

q(x)  = qo(x) + ~ f i j e -~ /x - l ) ,  x > 0 (11) 
.4=1 

qo(x) = O, X >~ 1 

so that 

Inversion of  the Ornstein-Zernike relation [Eq. (5)] and Eq. (6) yields 

~0 c~ - q ( x )  + H ( x )  - 12~ d t q ( t ) a ( l x  - t[) = 0 (12) 

H ( x )  = t h ( t ) ~  (14) 
x 

where 

f 
oo 

S ( x )  = tc( t )  dt (15) 
x 

S ( x )  = q(x)  - 12r/ dt q ( t )q( t  - x )  (13) 
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and 
= (Tr/6)p (16) 

Equations (12) and (13) are quite often used in their differentiated form, 
viz. 

xh(x )  = - q ' ( x )  + 12~ d t q ( t ) ( x  - t )h([x  - t[) (17) 

fo 
xc (x )  = - q ' ( x )  + 12-q d t q ' ( t ) q ( t  - x )  (18) 

It can be seen that a knowledge of qo(x) would represent a complete resolu- 
tion of the problem, since once q(x)  is known, h(x)  and c(x)  may be evaluated 
for arbitrary x by means of Eqs. (17) and (18). 

From Eq. (2) we have that 

M 

H ( x )  = Ho + ~yx  z - ~ ,  A~[cosh A~x -- 1], 0 < x < 1 (19) 
i = l  

where 

and 

M 

7 = 1 + ~ (cq),,2/cosh)t~) (20) 
i = l  

A i = ~/cosh h~ (21) 

Ho = th(t)  dt (22) 

For 0 < x < 1, on substitution of Eq. (19) into Eq. (12), we find 

M 

Ho + �89 2 - ~ A~[cosh~,x - 11 
i = 1  

N 

= qo(X) + ~_, f l j e -~ /x -  1, 
j = Z  

+ 12r/ qo(t) Ho + �89 - t)  2 

-- ~=z ~ Ai[cosh~i(x-  t ) -  1]}dt 

+ 1 2 7 /  f l j e - Z / t - l ' H ( [ x  - t[) dt 
J = l  
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Solving this equation for qo(X), we find that 

N 
qo(X) = �89 2 - 1) + Ql(x - 1) + ~ /3 ,411  - e-~,( x-l)] 

j = l  
M 

+ ~.. [Qil(cosh A~x - cosh A,) + Q~2(sinh a,x - sinh A~)] 
~=J. 

where 

0 < x < l  

(23) 

Q2 = r[1 - 12-q f o l q o ( t ) d t -  12r/~2/3jeq] (24) 
j__~ zj ] 

[fo :!',< Q, = 12,1r qo(t)t dt + ,=1 zJ ---z-j (25) 

dj = 1 - 1 2 r ] [ g ( z , ) + Y -  1 _  ~ _A,1, 2_ .] 
z, 2 ,=1 z3 2 - I* 2] (26) 

Q,~ = A, - 1 + 12~) qo(t) cosh A,t dt + 12~ ,=~ z T ~  ~2j  (27) 

Q,2 = - 12~A, qo(t) sinh A,t dt + = zj~7-~2),~,~ (28) 

and ~(s) is the Laplace transform of xg(x), 

~0 o~ ~(s) = e-SXxg(x) dx (29) 

The solution for q(x) has generated 2 • (N + M + l) variables, namely 
/3j, d i ( j  = 1,..., N), Qil, Q~2 (i = 1 .... , M)  and Q1, Q2, for which we require 
2 x (N + M + 1) independent equations. Of  these equations, N are pro- 
vided by Eq. (10), which we note from the form ofq(x) is linear in the vari- 
ables dj. Also, substitution of the form of qo(x) from Eq. (23) into Eqs. 
(24), (25), (27), and (28) yields 2M + 2 equations which are linear in the 
variables Q1, Q2, Q~I, and Q~2. Hence linear inversion of the 2M + 2 + N 
equations given above will yield expressions for these variables in terms of 
the/3j. We therefore require an independent equation for ~(s) to obtain the 
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remaining N nonlinear equations for the quantities/3 s. We note that Eq. (17) 
may be rewritten in terms of g(x) as 

xg(x)= x [ 1 - 1 2 ~ o ~ q ( t ) d t ] +  12~ fo~q(t)tdt 

fo - q'(x) + 12r/  dtq(t)(x - t)g(x - t) 

+ 127 dtq(t)(x - t)g(t - x) (30) 
9C 

Using the definitions of Eqs. (24) and (35), we find for x > 1 
N 

xg(x) = (Q2/~,)x + (Q1/v) + ~ fljcJzJ e-~/~-l) 
j = l  

+ 127 d t q ( t ) ( x -  t ) g ( x -  t) (31) 

where 

cj = 1 - 127 g(zj) (32) 
Z j  

z-T zj - ~=i z, z - Z~ 2] (33) 

The form of cj comes from noting that for x > 1 the form of q(t) in the 
last integral in Eq. (30) is simply given by Eq. (9). Equation (31) corresponds 
exactly with Eq. (21) of Hoye and Blum, <z3) although the derivation given 
here appears to be more straightforward. Multiplying both sides of Eq. (31) 
by e -~x and integrating from 1 to infinity, we find that 

~ xg(x)e-sx dx 

= ~ ~ - s  + s + zj) + lZrjc](s)~(s) (34) 
j = l  

where ~(s) is the Laplace transform ofq(r) .  From Eq. (2) we then find that 

~,(s) = F(s)/[1 - 12~c7(s)1 (35a) 
where 

M 

+2 
{=1  

1 ~ AiZ~ 2 

Q1 s] [ ( - ~ +  ~=1 ~ A~A~2) (1 + s ) +  - 7  

A,k~ As coshA, 2A~ _+ s 2-s sinh -~' + ~ s{3jcjzJ+ zj);e-~ 
j = l  

(35b) 
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Combining Eqs. (26), (33), and (35) yields the remaining N equations which 
determine the parameters generated in the solution. 

3. D I S C U S S I O N  

The analysis presented in Section 2 represents a complete resolution of  
the problem given by Eqs. (1), (2), and (4). A method must now be found 
for determining the parameters a~, 1~ (i = I,..., M) and Kj, zi ( j  = 1,..., N) 
in such a way that the conditions of Eqs. (2) and (4) are relevant to some 
real, soft-core fluid. With this in mind we examine two extreme cases: 

3.1.  / V / =  N = 1 

When the number of  parameters used to describe h(x) and c(x) is small, 
it would seem to be desirable to use thermodynamic criteria in calibrating 
the model. For  M = N = 1, we must find four conditions to specify ~, 2,, 
K, and z. It should be noted that in this case the parameter/3 [Eq. (10)] is 
found to be the solution of a quartic whose coefficients are related to the 
corresponding quartic in the hard-core Yukawa ftuid39) In fact, a very 
interesting feature of the solution presented in Section 2 is that the assumed 
forms of h(x) [Eq. (2)1 and c(x) [Eq. (4)] do not interfere functionally in the 
resulting form of q(x) [Eqs. (9) and (23)]. In view of this we find that for 
M = N = 1 the parameters Q1, Q2, Qll ,  Q12,/3, and d are found quite 
easily. There are then a number of ways in which to prescribe ~, ,~, K, and z. 
One method which we are currently investigating numerically is to assume 
Eqs. (2) and (4) are functional representations of h(x) and c(x) over the 
domains stated for a system of  particles interacting with realistic potential 
q~(r). Given the availability of a reasonable equation of state for a fluid 
with potential ~(r), three conditions may be found from the imposition of 
thermodynamic consistency between the three routes to the pressure and 
the known equation of state. The final fourth condition would be that h(x) 
be continuous at x = 1. Under these conditions we expect that the resulting 
correlation functions will be closely related to those of a real fluid. 

The case M = N = 1 can also be used in the model sense to investigate 
the effect on the critical region, correlation functions, and structure factor 
of  the inclusion of a soft core, by arbitrarily setting ) and z, setting ~ by 
continuity of h(x) at x = 1, and identifying K as a measure of inverse tem- 
perature. This would be assuming a mean spherical approximation-like con- 
dition for a soft-core Yukawa fluid. 

3.2. Large M, N 

When the number of  parameters used to describe h(x) and c(x) is large, 
it would not be possible to specify the required number of conditions by 
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purely thermodynamic and continuity considerations. In this case the 
parametrized forms of h(x) and c(x) [Eqs. (2) and (4)] may be used to formu- 
late a method of investigating the inverse problem in statistical mechanics. (14~ 

T h e  model structure factor Su(k)  is given by 

SM(k) = SM(k, 0t, Z, K, z) = 1 - pC(k) = O ( k ) O ( - k )  (36) 

In formulating the inverse problem, we may regard the parameters =, Z, 
K, and z as adjustable constants in a least squares fit to an experimental 
structure factor SE(k). By using one of the well-known approximations, 
such as Percus-Yevick or hypernetted chain, we can use the correlation 
functions h(x) and c(x) to extract the interaction potential CA(r), where the 
subscript A refers to the fact that the potential is obtained from an integral 
equation approximation. 

Previous work on relaxation of the hard-core condition from a corre- 
lation function viewpoint (15~ has shown appreciable improvement in the 
radial distribution function by lowering the first peak and dampening oscil- 
lations at large distances. I t  is hoped to be able to obtain the same degree 
of improvement using the analytically solvable model proposed in this paper. 
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